Bentuk Aljabar dan Pengertiannya

   Kata aljabar dalam matematika sering kita dengar tapi apakah kalian tahu darimanakah kata aljabar itu.kata aljabar ditemukan oleh Abu Abdullah Muhammad Ibn Musa al-Khwarizmi. Nama aljabar sendiri diambil dari bahasa arab "al-jabr" yang memiliki arti hubungan atau penyelesaian.dalam hal ini aljabar merupakan salah satu cabang ilmu matematika yang penyajiannya dimuat dengan huruf sebagai pengganti bilangan yang belum diketahui.Berikut penjelasan lebih detail tentang aljabar dalam matematika :

A. Pengertian Bentuk Aljabar
     Bentuk Aljabar merupakan suatu penyajian bentuk matematika yang  memuat huruf-huruf untuk mewakili bilangan yang belum diketahui. Bentuk aljabar terdapat unsur-unsur aljabar, meliputi variabel, koefisien, konstanta, faktor, suku sejenis dan suku tidak sejenis
1. x, 2y, x+3y , 3p+5q, a2 + b + 3 disebut bentuk aljabar
2. a x2 + bx + c = 0 ; a,b,c,x dan 0 adalah lambang-lambang aljabar
a dan b disebut koefisien ; c disebut konstanta
x2 dan x disebut variabel
3. 2 x2 ; 2 disebut koefisien dan x2 disebut variabel
5q ; 5 disebut koefisien dan q disebut variabel
4. 2x dan 3x merupakan dua suku sejenis
5 x2 dan 7 x merupakan dua suku tidak sejenis

B. Operasi Hitung Bentuk Aljabar
   Pengertian bentuk aljabar, koefisien, variabel, konstanta, suku, dan suku sejenis. Untuk mengingatkanmu kembali, pelajari contoh-contoh berikut.
1. 2pq                4. x2 + 3x –2
2. 5x + 4            5. 9x2 – 3xy + 8
3. 2x + 3y –5
    Bentuk aljabar nomor (1) disebut suku tunggal atau suku satu karena hanya terdiri atas satu suku, yaitu 2pq. Pada bentuk aljabar tersebut, 2 disebut koefisien, sedangkan p dan q disebut variabel karena nilai p dan q bisa berubah-ubah. Adapun bentuk aljabar nomor (2) disebut suku dua karena bentuk aljabar ini memiliki dua suku, sebagai berikut.
1. Suku yang memuat variabel x, koefisiennya adalah 5.
2. Suku yang tidak memuat variabel x, yaitu 4, disebut konstanta. Konstanta adalah suku yang nilainya tidak berubah.
   Sekarang, pada bentuk aljabar nomor (3), (4), dan (5), coba kamu tentukan manakah yang merupakan koefisien, variabel, konstanta, dan suku?
1. Penjumlahan dan Pengurangan Bentuk Aljabar
    Pada bagian ini, kamu akan mempelajari cara menjumlahkan dan mengurangkan suku-suku sejenis pada bentuk aljabar. Pada dasarnya, sifat-sifat penjumlahan dan pengurangan yang berlaku pada bilangan riil, berlaku juga untuk penjumlahan dan pengurangan pada bentuk-bentuk aljabar, sebagai berikut.
a. Sifat Komutatif
     a + b = b + a, dengan a dan b bilangan riil
b. Sifat Asosiatif
    (a + b) + c = a + (b +c), dengan a, b, dan c bilangan riil
c. Sifat Distributif
    a (b + c) = ab + ac, dengan a, b, dan c bilangan riil
2. Perkalian Bentuk Aljabar
    Perhatikan kembali sifat distributif pada bentuk aljabar. Sifat distributif merupakan konsep dasar perkalian pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. Perkalian Suku Satu dengan Suku Dua
Agar kamu memahami perkalian suku satu dengan suku dua bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal : 
Gunakan hukum distributif untuk menyelesaikan perkalian berikut.
  a. 2(x + 3)              c. 3x(y + 5)
  b. –5(9 – y)             d. –9p(5p – 2q) 
Jawab:
a. 2(x + 3) = 2x + 6                c. 3x(y + 5) = 3xy + 15x
b. –5(9 – y) = –45 + 5y           d. –9p(5p – 2q) = –45p2 + 18pq
b. Perkalian Suku Dua dengan Suku Dua
Agar kamu memahami materi perkalian suku dua dengan suku dua bentuk aljabar, pelajari contoh soal berikut.
Contoh Soal : 
Tentukan hasil perkalian suku dua berikut, kemudian sederhanakan.
 a. (x + 5)(x + 3)               c. (2x + 4)(3x + 1)
 b. (x – 4)(x + 1)                d. (–3x + 2)(x – 5) 
Jawab:
a. (x + 5)(x + 3) = (x + 5)x + (x + 5)3
                           = x2 + 5x + 3x + 15
                           = x2 + 8x + 15
b. (x – 4)(x + 1) = (x – 4)x + (x – 4)1
                          = x2 – 4x + x – 4
                          = x2 – 3x – 4
c. (2x + 4)(3x + 1) = (2x + 4)3x + (2x + 4)1
                               = 6x2 + 12x + 2x + 4
                               = 6x2 + 14x + 4
d. (–3x + 2)(x – 5) = (–3x + 2)x + (–3x + 2)(–5)
                              = –3x2 + 2x + 15x – 10
                              = –3x2 + 17x – 10

Amati kembali Contoh Soal. Ternyata perkalian dua suku bentuk aljabar (a + b) dan (c + d) dapat ditulis sebagai berikut.
             (a + b)(c + d) = (a + b)c + (a + b)d
                                    = ac + bc + ad + bd
                                    = ac + ad + bc + bd
Baca Juga : Pengertian Kurs Beli,Jual,Valuta Asing
3. Pembagian Bentuk Aljabar
   Pembagian bentuk aljabar akan lebih mudah jika dinyatakan dalam bentuk pecahan. Pelajarilah contoh soal berikut.
Contoh Soal : 
Tentukan hasil pembagian berikut.
  a. 8x : 4                    c. 16a2b : 2ab
  b. 15pq : 3p              d. (8x2 + 2x) : (2y2 – 2y)
Jawab: 
4. Perpangkatan Bentuk Aljabar
    Definisi bilangan berpangkat berlaku juga pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. a5= a × a × a × a × a
b. (2a)3 = 2a × 2a × 2a = (2 × 2 × 2) × (a × a × a) = 8a3
c. (–3p)4 = (–3p) × (–3p) × (–3p) × (–3p)
               = ((–3) × (–3) × (–3) × (–3)) × (p × p × p × p) = 81p4
d. (4x2y)2 = (4x2y) × (4x2y) = (4 × 4) × (x2 × x2) × (y × y) = 16x4y2
Sekarang, bagaimana dengan bentuk (a + b)2? Bentuk (a + b)2 merupakan bentuk lain dari (a + b) (a + b). Jadi, dengan menggunakan sifat distributif, bentuk (a + b)2dapat ditulis:
(a + b)2= (a + b) (a + b)
= (a + b)a + (a + b)b
= a2 + ab + ab + b2
= a2 + 2ab + b2
Dengan cara yang sama, bentuk (a – b)2 juga dapat ditulis sebagai:
(a – b)2= (a – b) (a – b)
= (a – b)a + (a – b)(–b)
= a2 – ab – ab + b2
= a2 – 2ab + b2

Berlangganan update artikel terbaru via email:

0 Response to "Bentuk Aljabar dan Pengertiannya "

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel